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The stress-strain relations derived from the sliding link model of chain entanglement proposed by Ball et 
al. (Polymer 1981, 22, 1010) are compared with experimental results. There is good agreement with 
Ogden's empirical treatment of several results obtained previously from general pure strain tests on 
rubber vulcanizates. New uniaxial data for random polyisoprene networks at various stages from the gel 
point indicate that a significant fraction of trapped entanglements does not behave as the sliding links of 
the model but gives the same contribution to the stress as the chemical cross-links. 
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INTRODUCTION 

The deviations from the classical statistical elasticity 
theory for undiluted elastomer networks are currently 
attributed to the presence of chain entanglements. 
According to the theory proposed by Ball et al), these 
topological constraints can be modelled by links which 
make a sliding contact between the network strands. 
Here, the corresponding stress-strain relations for pure 
strains are derived and compared with the elastic response 
of polyisoprene vulcanizates. 

Deformation dependent part of the model free energy 
In accord with the Valanis-Landel symmetry 

postulate 2, the replica formalism used to calculate in ref. 1 
the contribution of a sliding link to the strain dependence 
of the free energy of shear F of a Gaussian network leads 
to a sum of the same functions of each extension ratio 
212223 (equation (58), ref. 1): 

r =½N¢ ~ 2~ +½N, ~ I(} +r/)2 ~ 1 Ka----¢ +r/22 +log (1 +t/2 2) (1) 

Ks is the Boltzmann constant, T the temperature, Nc the 
number of cross-links, N, the number of sliding links and r/ 
a relative measure of the freedom of a link to slide. 

For r/= 0, the N, entanglements would induce the same 
strain dependence as the Nc cross-links and equation (1) 
would predict the usual free energy of a phantom network, 
a result previously obtained by Deam and Edwards 3 for 
the cross-links' contribution to the free energy. An 
argument minimizing P leads to conjecture that 
~/= 0.2343 if each slip link can on average slide as far as the 
centres of its topologically neighbouring links t. Though 
physical freedom restriction of slip is probably close to 
this case, r/is considered here as a material parameter, the 
actual value of which should be determined by comparing 
equation (1) with experimental evidence, similar to the 

two other parameters N¢, N~ directly related to the 
network's structure. 

For this purpose the result of the spatial derivations of 
the model free energy for pure strains are presented in a 
form yielding the stress contribution of the sliding links 
relative to that of the cross-links. These calculations imply 
the usual incompressibility condition 212223 = 1. 

Pure shear strain 
For pure shear maintained by principal stresses t~ and 

t 2 with t3=0, then 2~ =1/23 if 22=I  and the stress 
difference t~ - t2 along the directions of 2~ and 22 resulting 
from the derivation of equation (1) with respect to 2~ is 
given by: 

t ~ - t2=KBT N~-~ - (2) 
 C-q (,l:, + 1) 

which decreases monotonically with 21. 

Uniaxial extension or compression 
For uniaxial deformation maintained by a single 

positive or negative stress t=t~ along the direction of 
2=21, 22=23=2  -1/2 and for the reduced modulus O= 
t/(22 - 2 - 1 )  of the model: 

t 
2 2 - 2 -~ = KBT[N~ + N~Ht2, ~/)] (3) 

with a strain dependent term H expressing again a 
deviation from the classical elasticity theory: 

22 I I + 2+1 .] 
H(,~., r/) =22 +2 + 1 ~ 2(1 _i_ t122)2 J (4) 

This modulus, which decreases with 2 in extension, 
attains in the compression zone a maximum value larger 
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than the linear shear modulus 

O(4 ---. 1) = KaT[N c + N,/(1 + r/) 2] 

The response of the model differs radically in this respect 
from the Mooney-Rivlin stress-strain relation which 
usually describes the tensile properties of undiluted 
rubber networks at medium extensions: 

t C2 
22_2_ 1 =2C1 +2 -f-  (5) 

Numerical calculations show, however, that the strain 
dependences in the extension zone are not significantly 
different for equations (3)-(5), owing to a long inflection 
approximately centred on 4 = 2  in the plots of H(2, r/) 
against 1/2. 

To assess the applicability of the model to actual rubber 
networks, it is necessary to refer first to investigations 
reported previously which include pure strains of various 
types. 

DETERMINATION OF r/BY FITTING WITH 
OGDEN EXTENSIONS POWER SERIES 

Ogden 4 proposed to express the strain energy function W 
of incompressible materials by a power series of principal 
extensions consistent with the Valanis-Landel postulate: 

w=Y~ #" (27+22 +,~3 -3) 
n ~ n  

(6) 

Once the coefficients ~t,, #~ are obtained from an accurate 
identification of the results of general strain tests, this 
empirical formula completely describes the whole non- 
linear elastic response of a network s. The pure shear stress 
difference is, for example, given by: 

;t  n x n t I - - t 2 =  E/~n(21 - -2  2 ) (7) 
n 

parameters: RTN¢ =0.270 MPa, RTN,=0.275 + 
0.005 MPa. 

As expected, differences appear at large deformations. 
The marked increase of the stress terms for 2/> 3 probably 
reflects the finite chains extensibility. Non-Gaussian 
effects should also ultimately contribute to the 
progressive upward deviations found at 2 ~< 0.6. The latter 
discrepancy seems, however, mainly due to the indirect 
extrapolation procedure used to investigate the 
compression zone, and to higher correlation of links, 
neglected in the model ~, which then would be more 
influential than in the extension zone. 

The same treatment has been applied to the results of 
Jones and Treloar 7 for the equilibrium shear strain 
response of a natural rubber vulcanizate cross-linked by a 
sulphur-accelerator system (equation (21), ref. 7), and to 
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Figure 1 Assessment of equation (2) using the pure shear 
behaviour of a natural rubber vulcanizate for different sliding 
freedom coefficients, r/: A, 0.6; B, 0.4; C, 0.2343. Data derived 
from empirical equation (22), ref. 7. --, extension zone; - - - ,  
compression zone 

IO 

and the tensile stress in uniaxial extension or compression 
by: 

t = ~ ~,(~.', - , ~ - ' . / 2 )  (8) 
n 

In particular, a three-term series with the following 
coefficients was found 4 to account for the data of Treloar 6 
in uniaxial and biaxial extensions for an elastic, non-strain 
crystallizing network, prepared by curing natural rubber 
with 8% sulphur (equation (22), ref. 7): 

¢1=1.3 ¢x2=5.0 % = - 2 . 0  

#t =0.618 #2=0.00118 #a= -0.0098 MPa 

These figures have been used in equations (7) and (8) to 
analyse three values of 7: 0.2343, 0.40, 0.60, the pure shear 
and uniaxial deformation behaviours of the vulcanizate, 
shown by plots of (tt - t2)/(22 - 1) against 1/(~/22 + 1) 2 in 
Figure 1 and • against H(2, 7) in Figure 2. Both figures 
clearly indicate a better fit with the linear correlations 
predicted by the theory for r/= 0.40, in spite of relatively 
small differences between the values of 7. They also yield 
for ~/=0.40 the same values for the other material 
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Figure 2 Assessment of equations (3) and (4) using the uniaxial 
deformation of the network of F igure  1 for different sliding 
freedom coefficients, ~/: A, 0,6; B, 0.4; C, 0.2343, Data derived 
from empirical equation (22), ref. 7. - - ,  extension zone; - - -  
compression zone 
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those of Arentz and Landel for the stress at 10 min 
relaxation of a series of styrene-butadiene vulcanizates 
(Table 4, ref. 8). Best agreement was also obtained for 
r/=0.40, apparently almost insensitive to the networks' 
cross-link density or even to the polymer microstructure. 

RELATION OF N~, N, TO NETWORKS' 
CHEMICAL PARAMETERS 

To establish the relation of the model material parameters 
N¢ and N, with the actual structural characteristics of 
polymer networks, equilibrium data for better-defined 
systems were needed in a range of cross-link densities 
approaching the gel point. In the present case of rubber 
networks prepared from long-chain precursors, large 
hysteresis effects occur at low cross-link density and 
precise determinations of the stress relaxation kinetics in 
the domain of the strains examined become necessary. 
Independent determinations of the number of chemical 
cross-links and trapped entanglements are also required. 

For this study of the significance of N~ and N,, similar 
vulcanizates to the previous ones were used, tested in 
uniaxial extension only, with the assumption that 
r/*=0.40 deduced from the preceding general strain 
results. 

Materials 
Twelve networks have been prepared by cross-linking a 

commercial 92~o cis 1-4 polyisoprene, a highly pure non- 
crystallizing elastomer, with C parts dicumyle peroxide 
per weight of polymer: 0.002 < C <0.01. Press curing for 
30 min at 170°C ensured complete decomposition of the 
peroxide which is known to react stoichiometrically with 
polyisoprene with negligible chain scission 9. The cross- 
linking probability, q, of a randomly chosen monomer 
can ttfen be calculated from the peroxide initial content in 
the mix by q = 2C68/271, the average number ? of cross- 
linked units per chain from q and the number-average 
molecular weight M, of the presursor by ? = qMJ68 (68 
and 271 being the respective molecular weights of a 
monomer and of the peroxide). This evaluation of ? was 
confirmed by sol fraction determinations co, in accord 
with the Charlesby-Pinner relation between ? and to, (ref. 
lO). 

Thus, the molecular weight Me = 68/q between cross- 
links was obtained in the range 13 6(D-68 000 for two 
different molecular weight distributions of the precursor 
controlled by gel permeation chromatography: 

M,=390000 and Mw=1200000 for codeA 

M,=250000 and Mw= 630000 for code B 

These values of M~ are larger than the 'entanglement 
distance' Me =6700 of the polyisoprene deduced from 

dynamic measurement of its shear plateau modulus at 
30°C: G~=0.34 MPa. Table 1 gives for five networks 
together with M,, C, q and ?, the number of effective 
strands v, chemical junctions g and the fraction T~ of 
trapped entanglements calculated by the relations derived 
by Miller et al. ~ for randomly cross-linked systems with 
non-uniform distribution. 

Test method and results 
The stress relaxation of samples (70 x 4 × 2 mm) stored 

at - 15°C is recorded at constant extension and 30°C for 
20450 min, after stretching in less than 0.1 s in a maximum 
range of extension/l between 1.25 and 3. The same sample 
is used for tests at different elongations to avoid the 
dispersion due to cross-section errors, a reproducibility 
better than lYo being obtained in these conditions. 

Virtual equilibrium stresses, t, have been calculated by 
extrapolating at long times the relaxation data, ,using the 
Chasset-Thirion equation a 2: 

F(/1, 3)= Fe(/1)II +(L~}-~]\3o/ j (9) 

where F and F¢ represent the force per unit unstrained 
section at time 3 and at equilibrium, m and 30 two 
constants. 

The reduced stress ~=t/(/12-/1-1) found for the five 
networks of Table 1 is plotted against/-/(/1, q*) in Figure 3 
and against 1//1 in Figure 4 where the data fit equally well 
equations (3) and (5), with correlation coefficients all 
better than 0.96 relative to the theoretical linear 
regressions. The model parameters No, Ns and the 
Mooney-Rivlin coefficients so frequently quoted in the 
square analysis are given in Table 2. 

The results indicate an approximate equivalence 
between 2Cx/RT and Nc and 2C2/RT and N~ for 
Nc/(2CI/RT) ~- 1.10 and N~/(2C2/RT) ~- 1.40 for r/*= 
0.40. This fortuitous proportionality might confer a more 
fundamental meaning to the phenomenological 
Mooney-Rivlin coefficients to frequently quoted in the 
literature. 

To investigate the connection of Nc and Ns with the 
networks structure by means of equation (3) without a 
front factor correction affecting N~, it is necessary to 
assume first that the mean square end-to-end distance of 
the strands in the unstrained state is the same as for a 
corresponding set of free chains, a condition probably 
almost fulfilled for these randomly cross-linked networks 
occupying their as-formed volume. The theory of Ball et 
al., which implies that the topological entanglements all 
behave as sliplinks and that the chemical junctions are 
free to fluctuate about their mean position, leads then to 
predict Ns= G°TJRT and N¢=/~. 

A comparison of the data in Tables 1 and 2, as well as 

Table 1 Characterization of polyisoprene--peroxide networks 

Code Cx 10 2 M n x 10 - 3  q x 10 3 7 u x l 0 s  (cm3) P . x l0s  (cm3) Te 

A4 0.8 390 4.01 
A5 1.0 390 5.02 
B8 0.35 250 1.76 
B 10 0.6 250 3.01 
B 11 0.8 250 4.01 

23 5.17 2.67 0.859 
29 6.53 3.36 0.887 

6.5 1.94 1.07 0.560 
11 3.64 1.95 0.706 
15 4.99 2.64 0.769 
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the plots of N, and N~ - # against ~ in Figure 5, shows, 
however, that this is definitely not confirmed by the 
present experiments. The density of entanglements 
behaving as sliplinks when trapped, AT, = N,/T~, remains 
effectively constant but its mean value, 8.2 x 10- 5 cm- 3, is 
significantly lower than the number deduced from the 
plateau modulus of the uncross-linked polymer 
G°/RT=13.5x 10-Scm -3. N¢ is systematically much 
larger than p and this compensates somehow the 
deficiency relative to the expected number of effective 
sliplinks. 

To interpret analogous discrepancies between the 
chemical characteristics of various types of entangled 
polymer networks and their neo-Hookean behaviour, 
Dossin and Graessley ~3, and Ferry and Kan 14 have 
postulated a phantom network contribution to the elastic 
modulus equal to vRT, approximately twice as large as 
#R T for tetrafunctional cross-links in imperfect networks. 
The fluctuations of the cross-links, therefore, was assumed 

X 

2.0 1.5 3.0 1.25 1,0 Q6 
0.4 ' , , , I 

A5 ~ ' "  

A4 / -  - 

Q3 
II 

~ j B  I0 

, 0.2 

% - / -  B8 

II 

.,6, 

I I 

O Q2 0,4 Q( 

H ( X ,  O 4 )  

QI 

Figure 3 Plot of the tensile reduced modulus cb against the 
strain term H (2, r/*) for uniaxial extension of five polyisoprene 
vulcanizates, r/*=0.40; - - ,  extension zone; - - - ,  extrapolation in 
the compression zone. Peroxide content, C: A5, 1 ; A4, 0.8; B11, 
0.8; B10, 0.6; B8, 0.35% 
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Figure 4 Mooney-Riv l in  plot of the tensile reduced modulus d~ 
against 1/2 for uniaxial extension of the same networks as in 
Figure 3. Peroxide content, C: A5, 1; A4, 0.8; B l l ,  0.8; B10, 0.6; 
B8, 0.35% 

to be largely suppressed by configurational involvement 
with neighbouring strands. The conclusions suggest, 
moreover, that the trapped entanglements can behave 
either as sliplinks or as pseudo-cross-links, the former 
accounting for the C2 and the latter for part of the C1 
Mooney-Rivlin coefficients. 

This assumption is used here but at this stage the still 
disputable questions concerning the magnitude of the 
phantom network contribution to the modulus and an a 
priori possible increase of the proportion ~ of potential 
pseudo-cross-links with # or T~, still remain. Such 
variation of ~ with the cross-link density could explain a 
faster increase of No-  # with T¢ in Figure 5 than for No-  v. 
The proposed splitting of the trapped entanglements leads 
to the following formulations of Nc and N, in terms of the 
structural parameters: 

RTNc=~RT +~GmaXT~ (10) 

RTN, = (1 - oc)G~'~ T~ (11) 

Table 2 Stress--strain parameters of polyisoprene--peroxide networks (RT = 2.52 x 103 J; -q* = 0.40) 

Code 
2C]/RTxlO 5 2C2/RTxlO 5 N c x l 0  s Nsx 10 s Ncux 10 5 Nc# x 10 s N s x l 0  s 
(cm 3) (cm 3) (cm 3) (cm 3) (cm 3) (cm 3) (cm 3) 

A4 8.15 4.97 9.05 7.00 4.50 7.43 8.15 
A5 9.40 5.23 10.36 7.40 4.30 7.89 8.34 
B8 3.75 2.89 4.28 4.12 4.17 5.73 7.36 
B 10 5.92 4.35 6.65 6.45 4.28 6.66 9.13 
B11 7.71 4.35 8.52 6.10 4.57 7.65 7.93 
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Figure 5 Influence of the trapping factor T e on the number of 
sliplinks N s and of pseudo-cross-links N c --/~ or  N c -  v for the 
same networks as in Figure 3: O, Ns; II ,  Nc_ p; O, N c -  v 

where ~ represents either p or v, G~ ~ the maximum 
possible topological contribution to the elastic modulus, 
i.e. the total density of entanglements, and ~t the partition 
coefficient eventually depending on the cross-link density. 

With these notations, equation (3) can be rearranged to 
the form: 

¢ = 7  Gm'~ 
RT.T~ T~ + -RT - [a  +(1 - a)H(2' r/*)] (12) 

Elasticity of entanglement network: P. Thirion and T. Weil 

A(c~, 2)= G~"x [~ +(1 - ~)H(2, r/*)] (13) 

The value of the coefficient ct=0.328 has then been 
calculated from the ratio: 

A(0t, 1) [ 1~ , ,27 / [c t  + (1 _ 7)H(1.5, r/Z)] (14) 
A~-,1.5)  = ~+tl* , l  ~ j /  

where A(ct, 1)=7.35 x 10 -5 cm -3, A(ct, 1.5)=8.75 x 
10 -5 cm -3, H(1.5, r/*)=0.350, (1 +q,)2 = 1.96. 

Its substitution in equation (13) leads to a value of 
Gma'=0.329 MPa very close to the polymer plateau 
modulus G ° -0 .34 MPa and to the potential number of 
entanglements G~"X/RT= 13.04x 10 -5 cm -3 in the 
networks. 

These determinations of the topological parameters ct 
and G~ "~ are corroborated by the small variations of the 
density bT~, = (N~ - v)/T~ of the entanglements which seem 
to behave on this basis as pseudo-cross-links. The mean 
value of ~¢, = 4.2 x 10- 5 cm - 3 leads to other estimations 
of at by p~¢,./(A7 + ~,)  = 0.35 and of G~"X/R T by ATe,. + AT~ = 
12.5x 10-Scm -a in satisfactory agreement with the 
previous ones. 

CONCLUSIONS 

This verification of the sliding model of chain entangle- 
ments in entangled networks confirms the direct 
association indicated previously on the basis of the 
Mooney-Rivlin equation, by Ferry and Hsin-Chia Kan ~4 

which entails a rectilinear relation with slope unity for 
constant 2 between O/T~RT and 7/T~ provided that ~t 
remains an invariant parameter. 

The corresponding Langley plots of ~/T~RTagainst 
7/T~, previously restricted to network analysis of very 
small deformations, also become significant at large 
strains by means of equation (12). This method has been 
applied, therefore, both to the vanishing strain modulus of 
the five networks of Table 2 and to the equilibrium 
modulus ~(2) = t/(22 - 2 - 1) at constant extension ratio 
2 =  1.5 of the whole set of 12 networks. (The vanishing 
strain modulus is deduced from N, and N, by ~(2---, 1)= 
R T[N~ + Nff( 1 + r/*)2] .) In Figure 6, which shows the four 
correlations obtained in this way with #/T~ or v/T~ as the 
chemical variable, the points seem to occur along straight 
lines at least for 2 =  1.5. Owing to equation (12), this 
implies that d~t/d(),/T~) is constant. More precisely: (1) if 
~=v, the slope is close to 1 (1.04 according to a least 
square analysis), ~,. =(N~-v)/T~ should be constant in 
Table 2; if 7=# ,  the slope is close to 2, then 

R T # if ~ .  = N o -  p 
~t= G~,~[1 -H(1.5,  ~/*)] ~ '  T~ 

ATcvTff# should be constant in Table 2. 
The assertion 7 = v fits better with the results: AAT¢,. 

4%, A(~c, Tffp)~ 14%. However, ~ will be shown to be 
independent ofv/T~ (and 7 = v) if more complete data show 
that the Langley plot of Figure 6 yields straight lines for 
other values of 2 than 2 = 1.5, as it seems to be true for 
2--1 .  

Assuming that this is the case: 
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Langley plots extended to large extensions for a set of 
polyisoprene-dicumyle peroxide vulcanizates cross-linked in bulk 
and including the networks of Figures 3 and 4; for #/T e as 
chemical variable: i-1, ;. --, 1 ; I I ,  ,;.=1.5. For v/Te: ©, 2 --, 1; O, 
2=1.5 
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between the deviations of the statistical elasticity theory 
and the relative concentrations of cross-links and trapped 
entanglements. Except for compressive deformations, 
quantitative agreement with the model is found using 
general shear strain results of the literature for a value of 
the sliding freedom coefficient almost compat ib lewi th  a 
theoretical topological condition. 

Uniaxial extension tests with polyisoprene vulcanizates 
treated on this theoretical basis indicate a uniform 
repartition, with a ratio of - 2/3, 1/3 between the trapped 
entanglements which seem to actually behave as sliding 
links and those giving the same stress-strain dependence 
as that of the chemical cross-links. This conclusion is in 
qualitative agreement with a previous study of the elastic 
behaviour of well-characterized polybutadiene 
networks 13. 
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